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IDENTIFICATION AND SPECIES DIVERSITY OF
PHYTOPHTHORA

The taxonomy of the genus Phytophthora is based
mainly on morphological and growth characteristics
encompassing sporangial structures, antheridial
forms, host specificity and breeding systems (Tucker,
1931; Waterhouse, 1963; 1970; Newhook et al.,
1978; Ho, 1981; Stamps et al., 1990). Unfortunately
many of the characteristics used so far for species
identification are plastic, highly influenced by
environment, and show transgression between
species having an unknown genetic basis (Drenth
and Sendall, 2004b). Furthermore, taxonomic
problems arise from the assignment of a “type
isolate” (c.f Leonian, 1934; Hansen, 1991; Brasier,
1992) to act as the exemplar for descriptions of the
species, whose selection itself might have been
‘fortuitous’ in the first place, and as such cannot
conceivably represent the intraspecific variability of
an entire population nor it is likely to represent the
mean of this variability (Brasier, 1991). Moreover, in
light of growing evidence from molecular and
ecological studies it has become apparent that
taxonornic grouping based solely on morphological
criteria ‘might be artificial (Gallegly 1983; Brasier,
1991; Brasier and Hansen, 1992); in addition, there

are species which do not produce asexual and/or
sexual structures in culture media, or sometimes
even in host plants (Erwin and Riberio, 1996); in
other species, induction of reproductive structures
requires subtle manipulations of nutritional and
environmental factors. Diagnosis based on
phenotypic characters has also proven to be
insufficient when intraspecific variations in
reproductive and other traits are great, and often
phenotypic similarities may occur among species
coexisting in the same habitat. The increasing
presence of species hybrids compounds the
problem, as they are less likely to be recognized by
conventional approaches (Brasier, 2000; Olson and
Stenlid, 2002; Schard| and Craren, 2003). In spite of
these limitations some morphological parameters
like pedicel length and length/breadth ratio can
continue to play a role in identification (Appiah et al.,
20083).

In the last three decades, in addition to
morphological approaches various attempts have
been made to use other methods to simplify and
improve the accuracy of identification of isolates to a
species level, including use of protein patterns
(Hansen et al., 1986; Bielenin et al., 1988), isozymes
(Nygaard et al., 1989; Mills et al., 1991; Qudemans
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and Coffey, 1991a; b; Mchau and Coffey, 1994;
Oudemans et al., 1994; Mchau and Coffey, 1995),
serology (Jones and Shew, 1988; McDonald et al.,
1990; Benson, 1991; Cahill and Hardham, 1994;
Robold and Hardham, 1998; Gautam et al,, 1999;
Grote and Gabler, 1999; Ferraris et al., 2004), RFLP
analysis of nuclear and mitochondrial DNA (Férster,
and Coffey, 1991; Forster and Coffey, 1993; Mdler et
al., 1993; Lacourt et al., 1994; Tooley et al., 1996;
Cooke and Duncan,1997, Forster et al, 1998;
Ristaino et al., 1998; Hong et al., 1999a; Chowdappa
et al., 2003a; Martin and Tooley, 2004a, b) and more
recently SSCP analysis of the ITS region of rDNA
(Scott et al., 1988; Kong et al., 2003a; 2004).

Species specific probes and primers based on (i)
DNA probes [P parasitica (Goodwin et al., 1989;
1990a), P citrophthora (Goodwin et al., 1990b), P
cinnamomi (Judelson and Routh, 1996)], (ii) PCR of
random sequences [P, parasitica and P, citrophthora
(Ersek et al., 1994), P infestans (Niepold and
Schober-Butin, 1995), Phytophthora isolates from
Alder (DeMerlier et al., 2005)], (iii) PCR of DNA of
ITS region [P capsici, P cinnamomi, F megakarya
and P. palmivora (Lee et al., 1993), P. cambivora, P
quercina, P citricola (Schubert et al, 1999), P
capsici, P. citricola, P. citrophthora (Ristanio et al.,
1998), P, infestans, P. erythroseptica, P nicotianae
(Tooley et al., 1997), P nicotianae (Grote et al.,
2002), P. nicotianae and P citrophthora (lppolito et
al., 2004), P, capsici (Silvar et al., 2005)], (iv) PCR of
other genes or spacers: (a) intergenic region
between 5S and small ribosomal subunit - P
medicaginis (Liew et al., 1998), (b) ParA1 elicitin
gene sequence - P nicotianae (Lacourt and
Duncan, 1997; Kong et al., 2003b), (c) storage
protein genes — P. cinnamomi (Kong et al., 2003c),
and (d) mitochondrial cox | and Il genes — P .
ramorum, P. nemrosa, P. pseudosyringae (Martin et
al., 2004), (v) PCR amplification and differentiating of
the amplicons by electrophoresis (Maes et al.,
1998), (vi) PCR amplification and differentiating of
the amplicons by hybridization [P cinnamomi
(Dobrowolski and O’Brien, 1993)Jas well as for
identifying hybrids (Bakonnyi et al, 2006) have
proven useful in Phytophthora disease diagnosis
because of their high levels of sensitivity
and generally high specificity for accurate
identification.
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Some DNA based methods are advantageous
because pathogen isolation is not required and PCR
amplification can be performed directly from DNA
extracted from the infected tissue. DNA sequence
data obtained in phylogenetic studies have also been
used to differentiate Phytophthora species. Specific
regions that have been examined include the large
and small subunits of the rRNA (Briard et al., 1995;
Van de Peer et al., 1996) and the ITS regions of the
rDNA (Férster et al., 1990; Crawford et al, 1996;
Cooke and Duncan, 1997; Cooke et al., 2000b;
Férster et al., 2000, Kondo et al., 2005).

While the use of protein patterns and isozymes was
a major shift towards a more phylogenetic system
and changed our concept of classifying
Phytophthora, it could not account for all the
intraspecific variations and suffered from the setback
of complexity in case of total protein patterns. Even
though isozyme banding patterns are less complex
than total protein patterns and are easier to
differentiate and interpret (Nygaard et al., 1989), the
use of isozymes for identification depends on the
successful selection of the enzymes which is often
important for separation of even a few Phytophthora
species. Added to it is the cumbersome use of
different buffer systems for the visualization of
patterns. Though dipstick assays or ELISA were
developed for P cinnamomi (Hardham and Cabhill,
1993; Gabor et al, 1993; Cahill and Hardham,
1994), only polyclonal antisera are available
commercially (Bensan, 1991). Moreover, the A379ll
antibody (Ferraris et al., 2004) has the limited ability
of distinguishing Phytophthora species only on
Chestnut. Lack of specificity of some antibodies and
the necessity of obtaining monoclonal antibodies
complicate the use of serological techniques
(Bonants et al., 1997).

On the other hand, not only could nucleic acid based
targets account for the variation present but was also
generally more comprehensive covering most
species. Sequence analysis of rDNA genes is
effective but expensive even after the fall in prices of
commercial sequencing, whereas mitochondrial or
nuclear DNA polymorphisms or fingerprinting using
RFLP is less expensive, more direct and therefore
most frequently used. PCR amplification of nuclear
rDNA ITS regions and its RFLP method of Cooke et
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al., (2000a, b) is the most comprehensive till date
(Martin and Tooley, 2003), but still suffers from some
short comings in resolving the genetic differences of
very closely related species (Tooley et al., 1996:
Cooke and Duncan, 1997; Ristanio et al., 1998) and
also as in the case of P ramorum, cannot distinguish
between isolates from Europe and US (Kroon et al.,
2004), whereas mtDNA PCR-RFLP of cox | and ||
genes (Martin and Tooley, 2004a) could distinguish
these same species. Thirty one species can be
distinguished consistently (Martin and Tooley, 2004b)
by this method and more are being evaluated, but,
the mtDNA-based system has one potential
shortcoming; as the mitochondrial genes are
uniparentally inherited, it cannot be used for
identification and detection of interspecific hybrids. A
possible complication in the use of ITS regions is the
possibility of multiple forms of target sequence
present in single isolates resulting in summation of
RFLP band sizes of some isolates to be greater than
initial amplicon size, indicating that at least 2 forms
of the ITS regions were present (Cooke and Duncan,
1997; Brasier et al., 2003a).

The SSCP method developed by Kong et al. (2003a;
2004) for Phytophthora can at present distinguish 30
species, its subgroups and species complex and
therefore superior in many aspects than the ITS or
the cox gene based systems, but detection of hybrid
species have not yet been tested. Presently,
emphasis is being given on to develop a
comprehensive SSCP based key to the species of
Phytophthora (Dr. C. X. Hong, Virginia State
University, USA, personal communication).

In the last two decades phylogenetic analysis of both
Phytophthora and Pythium through protein patterns,
isozymes and RFLPs of both mitochondrial and
nuclear DNA has successfully resolved many
taxonomic issues within groups of species and has
also demonstrated that traditional taxonomic
concepts in Phytophthora bear little relationship to
the evolutionary structure of the genus (Brasier,
1991; Hansen, 1991; Brasier and Hansen, 1992).
Cladistically many individual taxa have been further
clarified by grouping them into 8 clades by the ITS
based methods of Cooke et al. (2000b). Some of the
diversification that has been generated due to the
use of molecular techniques are P tentaculata, P
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multivesiculata and P. quercina as unique and
separate species; conspecificity of P citricola and P
inflata as well as of P melonis and P sinensis:
separation of the traditional ‘P megasperma’
morphospecies into P megasperma sensu stricto, P
sojae, P. medicaginis and P trifolii (Cooke et al.,
2000b), P inundata (Brasier, 2003b); separation of P
drechsleri and P cryptogea (Cooke et al., 2000b);
reclassification of the initially identified eight isolates
from various hosts in North America on the basis of
isozymes & mtDNA as P cryptogea / P. drechsleri J
group of Mills et al. (1991) to P gonapodyides
(Brasier et al., 2003a); subsequent validation of the
separation of Rcapsici into P capsici and P
tropicalis (Zhang et al., 2004) etc.

Added to this milieu of reclassification there has
been a proliferation in the discovery of occurrences
of new species [P ramorum in US, sudden oak
diseases (Rizzo et al, 2002) and on ornamental
plants in Europe (Werres et al., 2001), P nemrosa
(Hansen et al., 2003), P. quercina (Jung et al., 1999;
Cooke et al., 2005), P ipomoeae (Flier et al., 2002),
R glovera (Shew and Olivera, 1998), P bisheria, P
kelmania (Abad et al, 2002), P europaea, P
psychrophila, P. uglinosa (Jung et al., 2000), P
pseudosyringae (Jung et al., 2003), P kernoviae
(Brasier et al., 2005), P, inundata sp. nov (Brasier et
al., 2003b), P. captiosa sp. nov and P fallax sp.
nov.(Dick et al, 2006) and other unique yet
unnamed taxa (Brasier et al., 2003a)] and numerous
natural interspecific hybrids (Man in't Veld et al.,
1998, Brasier et al., 1999; Bonants et al, 2000;
Brasier et al., 2000; Olson et al., 2002; Brasier et al.,
2004, loos et al., 2006).

In view of the above rather rapid and seminal
developments, there is an urgent need to revalidate
all previous reports based on morphology and also
all Phytophthora cultures of uncertain taxonomic
status deposited in collections mostly on the basis of
phenotypic  characterization, as unambiguous
reports are not only necessary for disease control
but also for clear scientific communication. Thus
there has been an increase in the number of reports
worldwide on molecular validation, which has not
only resulted in cataloguing unambiguously for
the future and bringing forth a clear picture of
the diversity of species present in a region but
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also has subsequently resulted in the correction
of the identity of the causal organism from
earlier morphological based reports, where often,
new species have been wrongly assigned to current
taxa and conversely, morphological variants of
existing taxa incorrectly assigned as new disease
threats.

In Southern ltaly, reexamination by Ippolito et al.
(2005) of all morphologically characterized disease
reports has yielded new information about the
presence of P tentaculata (which was previously
identified only as Phytophthora sp.) and blight of
zucchini caused by P capsici. In Korea species
diversity was assessed on the basis of PCR-RFLP
of the ITS region and small subunit of rDNA (Hong
et al., 1998; 1999a, b) and sequence analysis of the
ITS region which showed that 16 species were
present, but there were some problems of clear
delimitation and identification regarding the non-
papillate species. While earlier morphologically
identified isolates of P erythroseptica were reported
to be misidentified, another isolate previously
identified as P megasperma was found to be closely
related to P erythroseptica, P megasperma from
chick pea and P cryptogea-P. drechsleri complex
and hence could not be conclusively identified (Hong
et al., 2000).

Besides assessing the region/country specific
species diversity, species diversity in individual crops
has also been studied. In cocoa, an important cash
crop, molecular analysis using ITS- RFLP and ITS
rRNA gene sequence was used to assess both intra
and inter species diversity (Appiah et al., 2004),
which showed that there were 4 main cocoa
associated species forming 2 distinct groups, one
forming P, capsici and P. ciirophthora, and the other
P palmivora and P megakarya and that the P
katsurae from earlier morphological reports was
actually P, capsici, furthermore, it was suggested that
P capsici isolates may be closely related to P
tropicalis. Similarly Phytophthora species associated
with ink disease of chestnut were also evaluated by
ITS based methods, whereby it was seen that P
cambivora and P cinnamomi were the causal
organisms (Gouveia et al., 2005). Also in another
ITS based study (Yamak et al, 2002) nine
phylogenetically distinct taxa were found from
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irrigation water pathogenic to pear in Washington
State area.

Mirabolfathy et al. (2001) using ITS-RFLP and
sequencing of ITS region reported from Iran that the
causal organisms for gummosis of pistachio trees
are P. melonis and P, pistaciae and not P drechsleri
and P megasperma as previously identified. Besides
the diversity aspect, this had important implications
for control as pistachio were grown in close proximity
with cucurbits, which was known (from China and
Japan) to be a host for P. melonis. Moreover, many
of the novel species reported [like P kernoviae etc.
in U.K, the standard (P, alni subsp. alni) and variant
(P alni sub sp. uniformis and P alni sub sp.
multiformis) groups of P. alni in Europe, P. ramorum
in US, etc.] and species hybrids as mentioned earlier
are the result of renewed surveys based on this
trend.

Clearer species delimitation because of ITS based
methods have recently also resulted in first disease
reports from regions hitherto unknown for presence
of the organism or of the host association with the
organism [Basal canker of Beech in ltaly caused by
P. pseudosyringae (Motta et al., 2003); leaf and bract
blight of Anthurium in Brazil caused by P
citrophthora (Paim et al., 2006); root rot of Scotch
broom in ltaly caused by P megasperma (Vettraino
and Vannini, 2003); crown rot of red robin plant in
ltaly caused by P. cactorum (Vettraino et al., 2006);
P. nicotianae on jojoba in Argentina (Lucero et al.,
2005) etc].

In India few reports on molecular validation from
plantation crops (Chowdappa et al, 2003a, b;
Tripathi et al., 2003) are there, but this is grossly
inadequate as about a third of the total established
species of Phytophthora known so far has been
reported from India alone mostly from plantation
crops, fruits and vegetables. Moreover, some of the
earlier Indian reports based solely on morphology
has also not been accepted worldwide (Mehrotra
and Aggarwal, 2001). Therefore, there is an urgent
need for a molecular validation of the earlier
morphological Indian reports.

Among vegetable crops, the causal organism P
melonis, of fruit and vine rot of pointed gourd was
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shown by Guha Roy et al., (2006) based on ITS-
RFLP and sequencing of ITS region to be previously
wrongly identified as P. cinnamomi as earlier it was
based on morphology alone. The earlier report
(Khatua et al., 1981) was incidentally a first report of
P. cinnamomi causing fruit and vine rot from India!
Similarly, among plantation crops, the identity of
Phytophthora associated with areca nut was found to
be P meadii (Chowdappa et al., 2003b) and not P,
arecae as previously thought. Molecular
discrimination of P capsici isolates on cocoa and
black pepper and lack of differentiation of PR
palmivora isolates between coconut and cocoa was
also shown (Chowdappa et al., 2003c). The identity
of P nicotianae as a causal organism of leaf rot of
betelvine was also corroborated (Tripathi et al.,
2003) using ITS-RFLP based studies. Very recently
a more deep characterization of Indian Phytophthora
isolates is available in the GenBank using
translational elongation factor! alpa gene
(DQ861430, DQ861432, DQBE1433, DQBE1434)
and beta tubulin gene(DQ861435, DQ861436) both
submitted by Singh, H. B. and Kumar, A from NBRI,
Lucknow, India. A re examination of the
Phytophthora species through ITS-RFLF and
sequencing affeéting ten economic crops and fruits
were undertaken in eastern India which showed that
P. palmivora is not a pathogen of betelvine as earlier
reported, but only P. capsizi and P. nicotianae. It also
reported P. palmivora on papaya, P. nicotianae on
black pepper and P, capsici on chilli for the first time
from this part of the country and the ITS sequences
of respective Phytophthora sps. were also submitted
in the GenBank (Guha Roy et al., 2007c; 2008). As
most of the disease reports on vegetables and fruits
have not been assessed in India, there is much
scope left for assessing the species diversity and
validating all the earlier morphological reports.

POPULATION DIVERSITY

There has been an increasing realization that more
knowledge about the genetic structures of plant
pathogens is neeced to implement effective control
strategies and this has led plant pathologists to take
a population approach towards study of pathogens in
the last two decades. The limits for meaningful
polymorphisms having being reached, for phenotypic
markers, along with the fact that there have been
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rapid advances in technology, molecular markers are
being increasingly used worldwide for studies of
diversity of pathogen populations because they fulfill
relatively many of the criteria as outlined in Cooke
and Lees, (2004).

In Phytophthora species, there being relatively few
morphological characters by which to detect
intraspecific variation (and in some cases even
interspecific  variation!), markers based on
phenotype now play an accessory role as many are
under polygenic control and cannot be used for
inheritance studies (e.g. sporangial dimensions
especially length/breadth ratio, in vitro growth rate on
different media, mating type, virulence and some
tested on limited scale like aggressiveness,
temperature responses), however, a few are also
under simple genetic control (e.g. sensitivity to
fungicides). Detection of diversity is usually done
through use of phenotypic and genotypic markers
that are selectively neutral, highly informative,
reproducible and relatively easy and inexpensive to
assay. It is clear however, that no single marker
system would be adequate for all aspects of
research on diversity of Phytophthora species
(Milbourne et al., 1997). The choice of genetic
marker can have a substantial impact on the
analysis and interpretation of data. As Phytophthora
reproduce mainly asexually, producing a population
structure that is largely composed of clonal lineages,
a neutral marker such as a DNA fingerprint may be
used to address both questions relating to roles
played by population size, mating systems and gene
flow, and also for questions relating to effects of
selections, for which usually selective markers are
used; assuming there is complete correspondence
between genotype (DNA fingerprint) and phenotype
(for e.g. pathotype) (McDonald, 1997). However,
such assumption may not be valid as variable
pathotypes can arise within the same clonal lineages
(Drenth et al., 1996; Goodwin et al, 1995b; Abu-El
Samen et al., 2003).

Though it is best to use a widest practical array of
genetic markers, combining a mixture of selected
and neutral unlinked markers encompassing the
nuclear (and mitochondrial) genome(s) distributed
across many chromosomes; the number of marker
loci assayed varies with the objective and resources
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available to the investigator. The different types of
non-DNA (allozymes) and DNA based (nuclear/
mitochondrial genome RFLP, RAPD, AFLP, ISSR,
SSR and SNP) marker technologies used for
analysis of diversity in Phytophthora species, and
their relative advantages as well as shortcomings
have been reviewed (Duncan et al., 1998; Cooke
and Lees, 2004).

Both less reliable phenotypic markers like mating
type (Gallegly and Galinde, 1957), virulence
(Malcomson and Black, 1966), fungicide resistance
(Dowly and O'Sullivan, 1981), aggressiveness (Day
and Shattock, 1997; Kato et al., 1997), antibiotic
resistance (Shattock and Shaw, 1975) and
temperature responses (Mizubuti and Fry, 1988),
and increasingly used more reliable genotypic
markers like (a) codominant: isozymes (Old et al.,
1984; Tooley et al., 1985; Nygaard et al., 1989),
single locus RFLPs (Carter et al, 1999), ‘locus-
specific’ SSRs / microsatellite (Knapova et al., 2001;
Knapova and Gisi, 2002; Cooke et al., 20086), (b)
dominant : moderately repetitive multilocus RFLP
probe RG57 (Goodwin et al., 1992b), RAPDs (Meng,
1999; Ning and Xiu-guo, 2001; Lebot et al., 2003),
ISSRs (Tian and Babadoost, 2003), AFLPs
(Knapova and Gisi, 2002; Flier et al., 2003; Cooke et
al., 2003; Tian and Babadoost, 2003; Chowdappa et
al., 2003c), and (c) others like SNP (Cooke and
Lees, 2004; Lievens et al., 2006) and sequence
analysis (Cooke et al.,, 2000b) have been used to
assess population diversity within Phytophthora
species; but such studies till date have by and large
been confined to P infestans as much of the
international resources and effort GILB (Global
initiative on late blight) and EU funded ‘Concerted
Action project’, EUCABLIGHT (www.eucablight.org)
are on the ‘late blight pathogen'.

Studies on the phenotypic and genotypic diversity of
Phytophthora have largely been confined to P
infestans, as mentioned before and understandably
so! Whatever be its origin, the central highlands of
Mexico (Niederhauser, 1991), or the South American
Andes, which has also been proposed (Abad &
Abad, 1997); before the 1970s, European
populations of this pathogen appear to have
consisted exclusively of a single clonal lineage of the
‘A1 mating type, known as US-1, which had the
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mitochondrial DNA (mtDNA) haplotype Ib, an
allozyme genotype [based on glucose-6-phosphate
isomerase (Gpi) and peptidase (Pep) allozyme loci],
Gpi 86/100, Pep 92/100 and a characteristic
fingerprint based on the moderately repetitive
multilocus RFLP probe RG57 (Goodwin et al,
1994b). In recent years, analyses of P infestans
isolates from many European countries have
generally failed to detect this ‘old’ clonal lineage of P,
infestans, and have shown the presence of more
diverse, new populations, often containing both A1
and A2 mating type strains, with increased metalyx|
resistance (Dowley and O'Sullivan, 1981) and a
broader range of virulence factors (Deahl et al.,
1991).

There have been numerous studies worldwide using
both phenotypic and genotypic markers. Within UK;
diversity assessment was done on the basis of
mating type, mitochondrial and nuclear (multilocus
RG 57 probe) RFLP and sensitivity to the
phenylamide fungicide metalayx! in Scotland,
England, Wales (Day et al.,, 2004), Republic of
Ireland (Griffin et al, 2002) along with RAPD in
Northern Ireland (Carlisle et al, 2001) and
additionally by AFLP fingerprints in Scotland (Cooke
et al., 2003.). The A2 mating type was not detected
till 1995-1996 in Northern Ireland but thereafter
(Carlisle et al., 2001) with low population diversity
(monomorphic for Gpi & Pep loci), especially of A2
and were distinct from Great Britain and European
mainland isolates. Metalayx| resistant isolates were
always of A1 mating type in Britain and Scotland
(Day et al., 2004) and like in Ireland were found in a
single AFLP group (Cooke et al., 2003). Overall the
presence of mixed mating type, an increasing
frequency of isolates of intermediate metalayxl
resistance and AFLP diversity suggest occasional
sexual recombination (Cooke et al., 2003) but it does
not appear to be a factor in disease epimediology
(Griffin et al., 2002). Recent studies by Cooke et al.
(20086), which detected new mtDNA haplotypes in
Northern Ireland, have concluged similarly.

Within continental Europe: in Belgium, diversity was
assessed mostly phenotypically (Heremans and
Haesaert, 2004) with in vitro growth rate, sensitivity
to fungicide metalayxl, mating type, allozyme Gpi &
Pep loci and also with RFLP using RG 57 probe
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which showed that A2 isolates were very low in
number and the population could be characterized in
15 multilocus genotypes with some having never
being previously reported in continental Europe
(Bakonyi et al, 2002a); in Hungary, similar
phenotypic and RG 57 RFLP studies (Bakonyi et al.,
2002b) showed designation of 20 multilocus
genotypes with the most common peptidase allele
being 96 and presence of a unique 83/96 genotype,
and both Belgian and Hungarian data suggesting
migration and/or asexual reproduction playing a role
in the recent evolution of the pathogen (Bakonyi et
al., 2002b; a); in Poland, phenotypic structure of the
population was characterized with respect to
virulence, race diversity, aggressiveness and mating
type (Zarzycka et al., 2001; Zarzycka et al., 2002)
and also genotypic diversity (Sujkowski ef al., 1996;
Sujkowski et al., 1994) indicating the appearance of
new genotypes of A2 mating type in 1988 and
subsequent possible occurrence of sexual
reproduction  (Sujkowski et al, 1994), with
consequent occurrence of very complex P, infestans
pathotypes (Zarzycka et al., 2001) accompanied with
an increase in race diversity during 1996-2001 (
Zarzycka et al, 2002); in France too, phenotypic
[mating type, allozyme Gpi & Pep,
virulence(Andrivor. et al.,, 1994a), race structure
(Andrivon, 1994b)]Jand genotypic diversity studies
detected A2 mating type after 1995 and other
characteristics which were similar to the European
populations introduced after 1970, the exceptions
being Southern France isolates. Overall P. infestans
population on tomato and potato were largely
separated. No geographical substructure was
apparent in the races leading to the conclusion of
limited gene flow in the population. In the Nordic
countries of Norway and Finland, studies (Brurberg
et al, 1999) based on mating type and RG57
fingerprints showed the isolates from these countries
were similar in terms of genotypic diversity and
genetic distance between genotypes. Out of the 76
multilocus genotypes identified, 53 were unique
indicating that sexual reproduction is contributing
significantly to the genetic variaiion in Norway and
Finland. In a comparative study (Knapova and Gisi,
2002) of potato and tomato isc!ates frorm Sweden,
France and other European countries, using
phenotypic (mating type, sensitivity to phenylamide
fungicides, virulence on potato differentials and
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pathogenic fitness) and genotypic markers
(mitochondrial DNA haplotypes, AFLP and SSR); it
was found that, of the four haplotypes la, dominated
the population (93%), 15 & 11 SSR genotypes which
were never present befcre in potato and tomato
isolates respectively and 40 AFLP genotypes were
distinguishable among the isolates which suggest
that the field population in Europe may have evolved
from local process including sexual recombination,
host preference and selection rather than through by
distance migration.

In Russia, the Northern Caucasus and the Far East
results from metalayxl sensitivity, mating type,
allozyme Gpi, Pep and Me (Elansky et al., 1999a; b)
virulence genes and compatibility type (Vedenyapina
et al., 2002), oospore occurrence (Amatkhanova et
al.,, 2004), mt DNA haplotype and nuclear RG57
RFLP (Elansky et al., 2001) showed higher levels of
inter-population diversity from potato and tomato
than intra-population diversity with asexual
reproduction predominating in the field (Elansky et
al., 1999a). Population diversity near Moscow was
highly diverse with 15 unique genotypes in contrast
to Siberia, which had limited diversity in which a
dcminant clonal lineage SIB-1 was found (Elansky et
al., 2001).

South American countries are at the P infestans’s
host's center of diversity and therefore extensive
internationally funded programmes have been
carried out to determine the pathogen population
.structure there. Studies from Peru based on
virulence, metalayx| sensitivity, allozyme, mt DNA
RFLP and AFLP (Perez et al., 2001; Garry et al.,
2005) indicate presence of 5 clonal lineages (US-1,
EC-1, PE-3, 5, 6) with EC-1 dominating the
pathogen population in Andean countries north of
Peru. Using similar tools, reports from Ecuador
indicate presence of US-1, EC-1, EC-3 and a
madified EC-2, which had to be redescribed in view
of an extended host range and therefore perhaps
another host-adapted clonal lineage (Adler et al.,
2004; Erselius et al, 1999b; Oyarzun, 1998). The
Mexican populations studied (Goodwin et al., 1992a;
Grunwald et al., 2001; Flier et al., 2003) showed that
there was little genetic diversity in northwestern
parts in contrast to north eastern and central Mexico
where almost every single isolate represented a
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uniqgue genotype; 81.8% of AFLP loci were
polymorphic (Flier et al, 2003), with genetic

differentiation between populations from cultivated
Potato and wild Solanum sps. and first genetic
evidence for elevated ploidy levels in P. infestans
(Goodwin et al., 1932a). Genetic analysis of Mexican
isolates for metalyx| insensitive loci showed that it
mapped to the same locus as North American and
Dutch isolates; as did the British isolates which also
mapped to the samve linkage group but to a distinct
site, Mex 2. In Costa Rican potato fields the isolates
had no genetic similarity with US-1, US-18 and EC-1
clonal lineages, but had enough diversity to generate
11 RAPD genotypes with the possibility that these
shared a common ancestry (Paez et al., 2005).

Analysis of US isolates based on [mating type &
Gpi (Groves, 2002); mating type, metalyx|
insensitivity, Gpi, mitochondrial and nuclear (RG57)
DNA RFLP (Gavino et al, 2000); mating type
metalyx| insensitivity & Gpi (Wangsomboondee et
al., 2002)] showed that not only had metalyxl
resistant lines appeared (Fry, 1997a; b) but also
there were implications of sexual reproduction
and generation of an aggressive lineage (Gavino
et al., 2000). While diversity was high (16 unique
multilocus genotypes) in the Columbia basin of
Oregon and Washington, in NC, isolates from tomato
were genetically more diverse (Wangsomboondee
et al., 2002).

Canadian studies based on metalyxl insensitivity,
mating type, Gpi (Daayf and Platt, 2000) and RAPDs
(Peters et al., 2001; Daayf et al., 2001) showed that
the population of P. infestans changed significantly
in mid 1990 with detection of metalyxl insensitive A2
mating types which gave rise to novel ( 14 unique
multilocus) genotypes possibly being generated by

 asexual reproduction.

.In the African subcontinent, the genetic diversity of
Ugandan isolates of P. infestans analyzed with
mitochondrial DNA haplotype and AFLP (Ochwo et
al.,, 2002); and the Kenyan isolates with nuclear
RFLP, metalyx! insensitivity, allozyme characteristics
(Gpi & Pep) and aggressiveness showed that these
isolates and probably the Rwandan isolates belong
to the US-1 clonal lineage, but what was striking was
that Sub-Saharan Africa seems to the only area
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studied to date where two coexisting host-specific
population belong to the same clonal lineage
(Erselius et al, 1999a; Vega-Sanchez ef al., 2000).

In the Asian subcontinent, investigating isolates in
Korea, India, Taiwan, Indonesia, Thailand, Nepal and
China, Nishimura et al. (1999) found A2 mating type
isolates and Asian-specific allozyme genotypes.
Akino et al. (2004) showed the existence of a
genotype in both China and Japan suggesting the
distribution of the SIB-1 lineage in northern Eurasia.
Deahl et al., (2002) reported the migration and
replacement of Taiwanese population (of US-1)
between 1991-2001.Chinese isolates based on
mating type, colony growth, ability to grow on
oatmeal agar, linear growth rate and amount of
sporangia produced showed considerable genetic
diversity even though all isolates in the Yunan
province was of A1 type (Guo et al., 2002); Nepalese
isolates were studied for virulence and race diversity
(Ghimire et al., 2001a), mating type (Shrestha et al.,
1998; Ghimire et al., 2001b), metalyxl sensitivity
(Ghimire et al, 2001b) and nuclear and
mitochondrial DNA polymorphisims (Ghimire et al.,
2003). Results indicated that even though 11
multilocus genotypes were detected, 3 of them
constituted 94% of the total population, indicating
limited gene flow, with 30 races having minimal
virulence complexity, presence of both A1 & A2
mating types displaying different allozyme genotypes
and presence of the old clonal lineage US-1 which
was being displaced by new dominant population
(NP1) of mtDNA la type (Ghimire et al., 2003) in
keeping with the global trend.

A recent study (Gotoh et al., 2005) on 401 isolates
from eight Asian countries (Korea, India, Taiwan,
Indonesia, Thailand, Nepal, China and Japan
between 1992-2000, based on mating type, metalyxl
resistance, RG57 fingerprint, mt DNA haplotype and
3 allozyme loci (Gpi, Pep, Me) showed the presence
of 20 multilocus genotypes of which 14 were new
(e.g. NP-1 from Nepal and northern India). Eight
multilocus genotypes were found in several regions
(e.g. NP-1 and NP1 from Nepal and northern India)
providing presumptive evidence that migrations
could have occurred between regions in Asia.
Interestingly the multilocus NP-1 and NP-2

. genotypes have not been reported from other Asian
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countries so they may have arisen within Nepal and/
or northeastern India.

In India, diversity and differentiation of P. infestans
populations have been characterized by RAPD,
which revealed that the isolates could be grouped
into two geographical location based clusters; hill
and plains, with 85% variation in hill isolates (Atheya
et al, 2005). Characterization for virulence factors
and physiological races using 16 differentials
showed race spectrum. and complexity was much
higher in Himachal Pradesh hills than in the Indo-
Gangetic plains with virulence factor 1, 3 and 1,7
being the most dominant in Himachal Pradesh hills
and Indo-Gangetic plains respectively (Gupta et al.,
2005). The A2 mating type first recorded in India in
1991, is displacing the ‘old’ A1 mating type (Singh
and Bhat, 2003; Gupta et al., 2001) due to it’s
aggressiveness (Singh et al., 2004; Gupta et al.,
2003) and increasing insensitiveness to metalayx|
(Singh and Shekhawat, 1998) with a resultant
increase of the resistant isolates, similar to the
phenomenon observed in several parts of the world.

Even though a limited number of markers are
currently available, the sheer volume and number of
studies made on P infestans (mostly based on
cultivated potato) around the globe allows following
conclusions to be drawn concerning population
structure.

a) Variations detected in most countries is increasing
through migration events that have Dbeen
hypothesized to occur in a two-step (Niederhauser et
al., 1954; Fry et al., 1993) or a three-step process
(Goodwin et al., 1994a) or perhaps more complexly
(Ristanio et al., 2001). The most important event
being the secondary result of this migration i.e.
sexual reproduction of P, infestans in Europe as a
cause of the second migration (Hohl and lIselin,
1984). Isolates with the A2 mating type and new
allozyme genotypes were collected in the
Netherlands and eastern Germany as early as 1980
(Daggett et al., 1993; Drenth et al., 1994). These
genotypes had spread throughout Europe (Shattock
et al., 1990; Spielman et al, 1991; Fry et al., 1991;
Drenth et al., 1993; Tooley et al, 1993; Andrivon et
al., 1994a, b; Goodwin et al., 1994b; Sujkowski et al.,
1994;) and to the Middle East, Africa (Goodwin et
al., 1994b), and South America (Fry et al., 1993) by
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the early 1990s. Evidence supporting this migration
and the associated changes that occurred in P
infestans populations worldwide has already been
reviewed by many workers (Drenth et al., 1993; Fry
et al., 1993; Drenth et al, 1994, Shattock and Day,
1996; Fry and Goodwin, 1997b).

b) Clonal lineages dominate most populations, but in
some they are accompanied by many rare annual
genotypes. The most commonly detected ‘old’ clonal
lineage is the US-1 (Goodwin et al., 1994a), of A1
mating type, with a dilocus allozyme genotype Gpi
86/100, Pep 92/100 (Spielman et al., 1991) and a
characteristic 15 band DNA fingerprint (Drenth et al.,
1994; Goodwin et al., 1994a; Goodwin et al., 1995a),
mt DNA haplotype A (Goodwin, 1991) and most
probably derived from a single Mexican ancestor
during the past 134 years. (Goodwin, 1997). US-1
was probably the only genotype of F infestans
present in Europe prior to late 1970s and the
variations present in the European samples are the
result of mutation within US-1 clonal lineage.
Although the  frequencies varied  widely,
pathogenicity to all 13 potato and tomato resistance
genes tested has been identified within the US-1
clonal lineage. Similar rapid changes in virulence
occurred within the US-7 and US-8 clonal lineages
in the United States and Canada (Goodwin, 1995b).
¢) Populations in Asia are composed of 4 clonal
lineages, US-1, the clone that occurs throughout the
world (Goodwin et al., 1994b), JP-1 (Koh et al.,
1994), Japanese A1-A and Japanese A1-B (Kato,
2000; Akino et al., 2004); the latter two being
redesignated as JP-2 and JP-3 respectively by
Gotoh et al. (2005), with probability of sexual
reproduction occurring in Nepal, Thailand and Japan
(Gotoh et al., 2005) and with many of the multilocus
genotypes probably having arisen there rather than
migrating into it. The JP-1 clone in Asia is quite
different from the genotypes in other areas and may
have originated from a separate introduciion.
Similarly, the isolates representing single clones in
Australia, Bolivia, Brazil, and Costa Rica have
unusual genotypes (Goodwin et al, 1992a) that
probably were not introduced during any of the four
known migrations. However, the genetic diversity in
these populations is still a subset of that in Mexico.
d) The spatial heterogeneity is high, even at time
scale; this affects the choice of sampling strategies
and therefore, the question remains as to how many
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samples are needed for an accurate reflection of
population structure. It is also not known if there
really is any sub-structuring of European or Asian
populations or has long range spread by wind and
seed (tubers) created a random mosaic?

e) Within many populations, genotypes of both
mating types co—exist and oospores are detected in
the field, but the frequency of sexual reproduction
that generates new variation has not yet been
quantified; moreover the cause of the marked
spatial-temporal variation in mating type ratios is
also unknown.

Considering the diversity of other Phytophthora
species, the next species whose diversity has been
most studied is P. sgjae. In China the occurrence of
the pathogen is found in all the major soybean
growing areas and were of 72 virulence types with
virulence composition being most diverse and
complex in the Yangtze basin (Zhu et al., 2003; Zhu
et al., 2004). Northeast isolates could be classified
into 3 distinct races (Xu et al., 2003). RAPD analysis
showed that there was a high amount of
polymorphism (87.2%) and revealed existence of 12
distinct genetic groups but they could not be
correlated to virulence or geographical origin of the
isolates (Wang, et al., 2003).

Within the US, a survey in lllinois, Indiana, lowa,
Minnesota (Meng et al.,, 1999) and Ohio (Dorrance
et al., 2003) identified the races. RAPD analysis
clustered them into 4 distinct groups with diversity
being detected among isolates of races 1, 3, 4, 5, 7
and 25 but not among 8 and 13 Rps differentials and
with 52% of the locations having at least one isolate
with virulence to most of the Rps gene based
differentials. Similarly in Canada earlier studies
(Anderson and Buzzell, 1992) showed a simpler race
structure 1, 3, 4, 5,6, 7, 8,9, 13 and 21, with race 3
constituting 24.2%, which was the highest.

A comparative study of Australian and American
isolates for virulence and RFLP showed that the
Australian population consisted of 5 races (1, 4, 13,
15 and X) with low genotypic diversity of 2.5-14.3%
(3 multilocus RFLP genotypes with one occurring in
over 95% isolates), in contrast to the high (60%)
diversity corresponding to 12 multilocus RFLP
genotypes in-American population suggesting that
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the Australian population was established most
probably by a single introduction of the pathogen
and that the new races evolved from a common
genetic background through mutation.

Cocoa being another important cash crop, diversity
of Phytophthora species on this crop has been
studied. P. megakarya is the most aggressive
followed by P. citrophthora, P. palmivora and P.
capsici. Single reports of other Phytophthora species
include P. botryose, P. heveae, P. katsurae and F.
megasperma, although they are not considered as
major problems for cocoa production (Appiah et al.,
2004). Recently molecular analysis using ITS
sequences (Appiah et al.,, 2004) and RAPD (Falerio
et al., 2003) was used to assess the intra- and
interspecific diversity. The isolates clustered into
distinct genus specific groups irrespective of
geographical origin. The mating types (Chowdappa
and Chandramohanan, 1997; 1998) and the nature
of the native total protein profiles (Chowdappa and
Chandramohanan, 1995) of the 3 Phytophthora
species: P. citropthora, P. palmivora and P. capsici
causing the disease in India have been studied. Both
the A1 and A2 mating types have been found among
the P. palmivora and P. capsici isolates with A2 and
A1 predominating in palmivora and capsici
respectively; electrophoretic profiles showed that the
isolates of P. capsici were highly homogenous
forming a single cluster as did P. palmivora which
grouped separately but P. citrophthora isolates
resolved into 2 distinct groups. When the same 3
species (which are the major pathogens) were
studied in Brazil, using RAPD (Faleiro et al., 2003;
Faleiro et al., 2004) and differential sensitivity to
fungicides (de-Oliveira and Menge, 1999) they
showed different levels of intraspecific variation. A
SAHN clustering method showed 2 distinct groups
within P. citropthora based on host origin and 2
groups within P. capsici based on geographical
origin.

Polymorphisms were also detected at the level of
isoenzymes (Blaha, 1987; Blaha, 1990; Nyasse et
al., 1999), RFLPs (Blaha, 1990) and RAPDs
(Nyasse et al., 1999) for P. megakarya. Within Africa
there were 2 highly differentiated genetic groups
coinciding with 2 the major biogeographical domains,
which may reflect an ancient evolution of P.
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megakarya in Africa. Genotypic diversity was low in
West Africa compared to Central Africa with
intermediate marker pattern groups near the border
of Nigeria and Cameroon, in addition to the
prevalence of A1 over A2.

Morphological characteristics, pathogenicity tests
and RAPD showed that the Indonesian isolates of P.
palmivora causing pod rot of cocoa consisted of a
single genetic background different from those
pathogenic on coconut (Darmono, 1997). A study
using pathogenecity and RAPD on seven population
of P palmivora affecting coconut in India showed that
majority of the diversity was within the population
and there was clear separation based on
geographical locations of Karnataka and Kerala
population (Sudheesh and Sreekumar, 2006).

Since P. capsici infects more than 50 spscies,
diversity of the species has been studied on hosts
other than cocoa also. Genetic variation among
isolates has been reported from vegetable growing
areas of the world [mtDNA RFLP (Hwang et al.,
1991); AFLP (Lamour and Hausbeck, 2002);
oligonucleotide hybridization to amplified rDNA ITS
regions (Lee et al., 19S3); AFLP and ISSR (Tian and
Babadoost, 2003)]. Differentiation was there with
respect to host origin based on RAPD and
pathogenicity (Polach and Wenster, 1972; Luz et al.,
2003) and geographical origin based on ISSR and
AFLP (Tian and Babadoost, 2003) as well as within
a single host (Capsicum) based on virulence,
metalayx| response and RAPD (Silvar et al., 2006).

P. cinnamomi is another pathogen that additionally
causes havoc in forest ecosystems. In Australia both
‘morpho-physio-cultural’ characteristics like i) growth
rate on PDA, VBJA and CMA, ii) colony morphology,
iii) sporangial and gametangial morphology, iv)
sporangial production, v) mating type (Daniel et al.,
2003) and vi) temperature growth relationship
(Shepherd and Pratt, 1974), and genetic
differentiation based on isocenzymes (Old et al.,
1988), RFLPs and RAPDs (Linde et al., 1999) of the
isolates were done as with the isolates in South
Africa [using RAPDs and RFLPs (Linde et al., 1999),
as well as isozyme polymorphisms (Linde et al.,
1997)] and in Taiwan [using RAPD and mating type
(Chang et al., 1996)]. The Australian isolates were all
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of the A2 mating type irrespective of geographical
origin suggesting variation was derived asexually
similar to the situation in S. Africa where sexual
reproduction occurs rarely. Gene and genotypic
diversity studies showed that isolates from both
these countries were almost identical. Analysis of the
Taiwan isolates showed that host specified races
might occur in P. cinnamomi.

Diversity studies have also been carried out on P
colocasiae by Zhang et al. (1994) in mainland China
based on mating type, soluble protein profiling,
growth response, morphology of sporangia and by
Lebot et al. (2003) in Southeast Asia based on
RAPD, isoenzyme; P clandestina based on
pathogenecity, RAPD profiles (Purwantara et al.,
2001; Purwantara et al., 1998); P erythroseptica
based on RAPD analysis, mefenoxam sensitivity
(Peters et al., 2005); P quercina in European
populations based on 260 AFLP markers (Cooke et
al., 2005) as well as R nicotianae based on
differences in elicitin production (Bonnet et al., 1994,
Colas et al., 1998), RAPD (Ning and Xiu-guo, 2001;
Zhang et al., 2003) and in India, based on RAPD
(Guha Roy, 2007c; Guha Roy et al., 2008), effect of
fungicides, biocontrol agents, morphology and
mating type of the isolates (Guha Roy et al., 2003;
2007a; 2007b; 2008). Even though P nicotianae is
one of the most polyphagous species yet not much
study has been undertaken to assess the diversity
and it's potential for exhibiting specialization for
particular host species.

In recent years, parallel to the resurgence of
Phytophthora in pathogenic conditions i.e. in fields,
and in the news odmycete research has entered an
exciting phase due to the technical developments in
the last decade. The recent sequencing of the draft
genomes of P. sojae and P. ramorum (Tyler et al.,
2006) as well as the genome and mitochondrial
haplotypes of P infestans (http://www.broad.mit/
annotation/genome/phytophthora_infestans) can be
considered as the turning point in our understanding
of these organisms. Structural genomic studies
under way at the Phytophthora Genome Consortium,
Syngenta Phytophthora Consortium as well as
collaborative efforts at Broad Institute, MIT and
Harvard University USA have resulted in draft
genome sequencing of P. infestans (237Mb), P. sojae
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(95Mb), P. ramorum (65Mb) as well as mitochondrial
haplotypes of P infestans which will be of
tremendous use for the development of genetic
markers like single nucleotide polymorphisms
(SNPs) for population genetics and strain tracking of
the pathogen.
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